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Overview of Cellular Automata 
Cellular automata is generally described as a 2D grid of “cells” with various attributes 

that interact with each other using specific rules. These attributes can be as simple as a binary 
number representing either “alive” or “dead,” a floating point number representing a weight, a 
color, or any other attribute. The rules that make up these systems must be strict but having few 
rules tends to constrict the system more than having an abundance of rules. 
​ For this project, I explored Conway’s Game of Life, a classic cellular 
automaton, it looks at each cell in a generation and decides whether or not it 
will live on to the next depending on the number of “alive” or “dead” 
neighbors it has. I used the “Moore’s neighborhood” to define the cells to 
which the center cell would look to determine its next state. Moore’s 
neighborhood looks at both the four sides of the center cell, as well as the cells 
that share vertices, giving eight total neighbors. The alternative to Moore’s 
neighborhood would be Von Neumann’s neighborhood, which only looks at 
the sides of the cell, giving four total neighbors. Conway’s Game of Life 
usually looks at the Moore neighborhood because of the increased number of potential neighbors 
and, therefore, the increased interaction. 
​ Conway’s Game of Life is governed by 4 rules: 

1.​ Any live cell with fewer than two live neighbors dies, as if by underpopulation. 
2.​ Any live cell with two or three live neighbors lives on to the next generation. 
3.​ Any live cell with more than three live neighbors dies, as if by overpopulation. 
4.​ Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction. 

These rules are evaluated once per cell per generation, meaning that the only changes that 
happen to the grid are from generation to generation and that if a cell were to die next generation, 
it would still count as alive for the current generation and allow neighbors to count it. 



 

Creating Conway’s Game of Life in Python 
​ To create the game in Python, I had to decide on a few parameters before designing the 
system. First, I needed to decide what data structure I wanted to hold the cell’s data. A 2D array 
of booleans would have worked for the general functionality. Still, it would be limited to only 
storing a single bit of information and couldn’t hold any cell history or the cell’s location in the 
grid. To make the cells as flexible as possible, I made them objects with several data members 
and functions that I could call in my application layer. To hold all these cells, I would need a 2D 
array to arrange the information simply. Still, I also wanted this grid to have extra functionality, 
such as history and member-specific functions. Ultimately, I decided that the Game of Life 
(GOL) object would hold: a 2D array of Cell objects, called a board, the starting board, the 
ending board, the ending condition, the number of generations to reach a steady state and an 
array to hold all previous boards, called board history. The final attribute to consider for these 
boards was whether to make them limited by the edges of the grid or if I should have edges wrap 
around to the opposite sides (left to right & top to bottom, and vice versa). This would allow the 
game to run more smoothly and without having to create a new rule to deal with edge conditions. 
I decided to have the grid wrap around because I felt it was the best approximation I could do 
with the Python knowledge I had and the scope of the project. This technically meant that the 
game was playing out on the surface of a torus. 
​ Creating a GOL object in main would instantiate the first board randomly with either 
alive or dead cells. This random noise would be the foundation for all successive generations. 
The GOL object has an important function called “evaluate()” which would loop through the 
most recent board and apply the rules to each cell, and fill out a temporary board that would be 
the one in the next generation. This two-step process of filling out a new board and then 
assigning it to the current one separates the cell logic from generation to generation.  
​ I implemented three primary end conditions to stop the game from continuing. The first 
was to see if every cell on the board was dead. The second was to check if the current board had 
a periodicity of two by simply checking it against the board history of two boards ago. If they 
were the same, then I knew that all subsequent boards would be the same, so I could end the 
process early. The final end condition was to end if the number of generations had exceeded 
10,000. This ensured that the program generated the dataset efficiently and never got stuck on an 
infinite configuration that wasn’t period two. Further exploration into this topic would include 
running these long-lasting configurations and looking at their long-term behaviors and seeing if 
they had interesting behavior. A modification was applied to the board history because the array 
size grew quickly as the game progressed. Each board was gamescale2 bytes because each cell’s 
living state was stored in a char ‘1’ or ‘0’. The largest game scale I used was 128, meaning each 
board contained 16.3KB of information. The modification was that every 500 generations, the 
board history would clear to limit memory usage. 
​ The game is then working at this point, and the generation rate was limited purely by the 
computer's performance. My laptop could run two program instances at 10 generations / second 
each. My desktop computer could easily run four and also run at 10 gen/sec, the computer I used 



 

to generate the datasets 24/7 for a week. The program was modified slightly once again to see if 
the end conditions were reached, and if so, save the ending board, number of generations, and 
reason for ending in a .txt file, which I would parse in the future and perform data analysis on.  
​ Overall, the program created three datasets with total sizes described in the following 
table: 
 

Scale # Of games Data.txt size Data.csv size 

32 14167 30.23 MB 87 MB 

64 8636 71.3 MB 210MB 

128 2320 75.5 MB 224 MB 

Data Analysis 
The first step to analyzing the data was to convert it into a usable format. I had some 

prior experience using the Pandas library in Python, so I knew what my end datatype would be, 
but the accurate parsing of the information took some time to get down. I created two 3D arrays 
to hold all the start boards and end boards, and two 1D arrays to hold the number of generations 
and end codes. I then created a data frame to store this information and used Pandas again to 
save it as a .csv for quicker reading in the future.  
This means I only needed to parse my raw files once then I could use the .csv for repeated study. 
For the actual data analysis, I wanted to answer a few questions: 

1.​ How does the time to steady state scale with the game scale?  
2.​ What ending configurations are the most common, and does game scale affect this 

characteristic 
3.​ What attributes do the “near-infinite” configurations have, and is it possible to predict 

their outcomes? 

Part 1 
With the data I have gathered, I can create histograms of each dataset and examine the 

distributions. Below are the histograms for 32, 64, and 128 game scales. An important feature is 
that each dataset’s bin count was determined using the Freedman Diaconis Rule and not 
arbitrarily chosen. To add transparency, the bin count is provided in the title of each graph.  
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Described in the table below is the percentage of games simulated that exceeded the 
allowed generation limit, the average generation time excluding those that went beyond 10,000, 
and the most common distribution bin that the data fell into. 
 

Game Scale Average Generation 
Time 

Percentage of whole  Mode Bin 

32 457 2.13% 161 - 194       

64 1251 0.69% 552 - 645 

128 2703 0.99% 1616 - 1887 

 
Using this table, we can see that both the mode and mean generation time increase with 

the increased grid size. This is likely because similar complex shapes are being created in 
different sections of the board shortly after creation. The larger grids allow these shapes to be in 
greater abundance and interact with each other over time. This causes the game to run for longer, 
and we can observe that the percentage of long-lasting boards should decrease with the game 
scale. Still, because the cutoff was arbitrarily assigned to be 10,000, the 128 grid was 
disproportionately affected. The rest of the data shows the relationship between grid size and 
generation time. Applying a linear regression to these 3 points gives us a near-exact fit, with an 
R2 value of 0.994, showing that the relationship between game scale and average generation 
length is linear. 

 

Part 2  
Described in the table below is a list of some of the most common shapes and 

configurations found because they were period two. This list was compiled by examining the 
ending boards; no statistical analysis was performed. 
 

 

First State Second State Explanation 

 
 

Sets of 3 cells in a row are 
stable and have period 2. 
Standalone rows or columns 
of 3 were exceedingly 
common. 



 

  

Sets of 2x2 cells are stable 
and do not oscillate at all 
because they sit perfectly on 
the living conditions for each 
cell. 

  

This configuration is also 
totally stable and occurs often 

  

Stable 

  

Stable 

  

Stable 

  

Stable 



 

  

Stable 

  

Period 2 

 
This table is not exhaustive, and I’m sure there are many more configurations that my 

program would have halted or otherwise found uninteresting. This list, however, is representative 
of the most common causes for the program to halt due to the detection of a period-2 or entirely 
stable configuration.  

Gamescale didn’t seem to have much effect on the variety of ending configurations, and 
this is likely because these stem from the initial state. By starting with random noise, the board 
quickly devolves into a chaotic system where groups of live cells start to affect residues of 
others. The random state of the initial board seems to have much more effect on the ending 
configuration, which matches our preconception of how these cellular automata behave. 
 

Part 3 
Next, I would like to briefly discuss the causes of the long-lasting configurations. The 

table below briefly describes how often and exactly how many games reached 10,000 
generations. 

 

Game Size # of occurrences % of total 

32 23 2.15 % 

64 60 0.69 % 

128 23 0.99 % 

 



 

The most prominent cause of these was the config commonly known as a “glider”. 
Gliders traverse the board diagonally and are made of just 5 cells, arranged to nudge themselves 
forward by 1 cell every 4 cycles. The table below looks at the life cycle of the glider. These were 
the most common cause because their shape is very simple and requires very few cells. The only 
requirement for them to exist forever is a clear diagonal line free of any obstacles. 

 

 

  

 

 
Gliders were the most common cause of these long-lasting systems, but occasionally 

some non-period two shapes would appear. The following two tables show the two non-period 
two configurations I found in my dataset just by visually inspecting the boards with the exit code 
3. 

 
 

   

 
 

​ This configuration occurred only once across the entire set. It had a period of 15 and 
occurred during a 64x64 game. This needed a relatively large amount of free space, which is 
likely why it only occurred once.  

 
 

  



 

 
   

 
 

 
 

   
 

 
 

​ Given more time, I would have liked to make a script that would look through each board 
with over 10,000 generations and look for the shapes outlined above. This would then hopefully 
provide an estimate of exactly when the stable configuration was reached. Once enough data 
about stable configurations had been gathered, it would have been really interesting to try and 
use machine learning to create a model that could predict the behavior of any given board state. 
Further statistical analysis could have also been in the form of counting the individual shapes in 
the ending boards and finding the occurrences of each throughout the entire dataset to see if there 
was any correlation between game scale and what shapes came out of the noise.  
 

Conclusion 
​ Creating the implementation of Conway’s Game of Life took much less time than I 
originally anticipated so I was able to quickly begin creating a GUI and generating data for my 
later analysis. The actual process of parsing my raw data files and turning them into a Pandas 
dataframe, the library I had used once prior, took more time than expected because of my 
unfamiliarity with some Python conventions. The creation of graphs, tables, and numerical 
analysis taught me how to do simple things in Python and how to draft programs quickly in the 
language. I’m glad that the language had to be Python for this project because it brought me out 
of my comfort zone, and gave me access to the powerful libraries that others have already 
written Python.  
​ The data analysis showed that the generation time to reach steady-state depended on the 
game scale by a linear factor. End state configurations didn’t depend heavily on the board size 
because the most common shapes were smaller than 3x3. Small shapes like this easily fit on the 
board and could coexist with others. In the rare instances where large shapes occurred, it can be 



 

seen that very few other shapes exist on the board, likely because they were absorbed into the 
large shape previously in the game’s lifespan. 
​ More work can always be done on programming projects like this but knowing when to 
stop is important. A stretch goal I’ve been thinking about for my programming projects has 
always been to incorporate the NVIDIA CUDA library to run computations on my graphics 
cards, thereby accelerating computation time. I’d estimate that I spent 48 continuous hours 
running multiple instances of the generation program, and I think that using all the hardware in 
my PC could have made the process quicker or generated more data to analyze.  
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